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PREFACE
he present treatise contains a series of theoretical in-

A vestigations on the properties of the jet-wave. The latter 
has during recent years achieved a certain significance 
through its various applications.1 A special importance 
may be ascribed to the periodic jet-wave owing to the 
predominant part it plays in the jet-wave rectifier, the 
first high capacity mechanical rectifier ever produced.2 
The present paper in the main confines itself to this 
type of wave. In the first chapter the theory of a wave 
of small amplitude is considered. The latter theory per
mits a rather complete discussion of the properties of 
the wave under various conditions. Some of its results 
have already been stated in a previous Danish treatise 
(Nye Ensrettere og periodiske Afbrydere). For the sake 
of completeness and in order to have the said results

1 The Jet-wave and its Applications. Paper read before Section G 
of the British Association at Glasgow, September 11, 1928. “Engineering” 
Sept 14, 1928.

2 1) Nye Ensrettere og periodiske Afbrydere. Jul. Gjellerups Forlag, 
København 1918.

2) Development of the Jet-Wave Rectifier. Paper read before Sec
tion G of the British Association at Leeds, September 5, 1927. “Engi
neering” September 9 and 16, 1927.

3) Den konstruktive Udvikling af Straalebølgeensretteren. “Elektro
teknikeren” Nr. 23 1927.

4) Güntherschulze : Die konstruktive Durchbildung des Queck
silber-Wellenstrahl-Gleichrichters. Elektrotechnische Zeitschrift 16. Au
gust 1928.
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presented in a language generally known, the theory has 
here been given at full length, including the earlier results 
and some additional discussions. — In chapter II the com
plete theory of a jet-wave of partly arbitrary amplitude is 
represented and in addition it is shown how an approximate 
theory sufficient in most practical cases may be produced. 
Finally graphical methods for the production of pictures 
of the wave are considered. — In chapter III special pro
perties of the jet-wave are made the subject of investigation 
and formulae for the electric resistance of the wave, for 
the healing of the same by an electric current etc. are 
derived. Finally, in an appendix, a preliminary test on the 
statements of the theory has been given.

In conclusion I desire to express my thanks to the 
Trustees of the Carlsberg Fund for having enabled me to 
take the time necessary for the completion of the work.

Physical Laboratory II, The Royal Technical Colleye.
Copenhagen, October 1928.

Jul. Hartmann.
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CHAPTER I
The Jet-Wave of small Amplitude.

1. The Jet-Wave.
If the nozzle AT of a liquid jet is moved to and fro 

perpendicularly to the axis of the nozzle, the jet assumes 
the shape of the wave-line indicated in fig. 1. The jet thus 
deformed is called a jet
wave. In the case considered 
the wave is produced in 
the following way. The in
dividual jet-particle will, in 
passing the nozzle, assume 
the velocity of the same and 
keep it on its way onward 
together with its original 
velocity i. e. that of the 
original jet. It will therefore 
follow a straight line, say 
ab in fig. 1, which forms 
a certain angle H with the 
direction of the axis of the 

Fig. 1. Jet-Wave produced by an 
oscillating Nozzle.

original jet depending on the velocity of the nozzle at the 
moment of departure of the particle. The direction thus 
varies from particle to particle. If the nozzle performs har
monic oscillations, the direction will also vary in a liar 
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monic way and the consecutive particles must arrange 
themselves along a simple wave-line, the amplitude of 
which increases proportionally to the distance from the 
nozzle (or nearly so). The jet-wave moves on as a unity

Fig. 2. Jet-Wave electromagnetically 
produced.

with the velocity u of the 
original jet. Its wave-length 
is obviously determined by

(1) l = v-T,

if T is the period of the 
oscillations of the nozzle.

Now, if the jet is made 
of an electrically conductive 
liquid, say mercury, a jet
wave may be produced in 
another very simple way in
dicated in fig. 2. The jet J 
passes a constant magnetic 
field F, the lines of force of 

which are perpendicular to the jet and in the figure also 
to the plane of the picture. An alternating current, the 
auxiliary current, supplied by a suitable transformer Vt, is 
passed through that part of the jet which is inside the 
field at any time. The current may be led into and out 
of the jet through the nozzle and a special electrode, 
the auxiliary electrode, touching the jet. Owing to the inter
action between the current and the field the consecutive 
particles will be attacked by a periodic, mechanical force 
which is nearly perpendicular to the jet and to the mag
netic field, thus situated in the plane of the picture. Ac
cordingly they will be sent out along a line of a direction 
H varying periodically with the lime as in the former case, 
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and consequently a similar wave will be produced. Ob
viously, instead of employing a constant field and an alter
nating current, an alternating field in interaction with a 
constant current may as well be employed for the pro
duction of the wave. The subject of the present paper is 
mainly the theory of the electromagnetically produced 
periodic jet-wave.

2. The Jet-Wave with small Amplitude and a laminar Field.
In the first instance we shall confine ourselves to waves 

of such small amplitude that the mechanical force pro
duced through the interaction of field and 
current may be considered as perpendicular 
to the axis of the original jet during the whole 
passage of a particle through the field. Further
more we will assume that the extension dl 
fig. 3 of the field in the direction of the original 
jet is small compared to the wave-length. This 
is the same as to assume that the current 
may be considered constant during the pas
sage of a small particle lx of the jet. Finally 
we shall base the following theory on the 
supposition of the individual particles moving 

IlIzJX

Fig. 3. Theory 
of the Jet- 
Wave with 
small Am

plitude.

independently of each other. We shall thus neglect the 
cohesion and friction between the particles of the jet.

The mechanical force acting on the particle z/.x passing
the field at the moment f0 is 

(1) K = •H. '1x
0 ¿0

provided Ht is the intensity of the field and if the value of 
the current at the said moment. We shall thus preliminarily
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assume that both vary with the time. As indicated the
force is perpendicular to the 
the rr-axis in fig. 3. During

original jet, that is to say, to 
the passage it will give the

particle considered a velocity /’ perpendicular to the said
axis determined by

(2) m-z/æ-u = K —
y n

m indicating the mass per cm of the original jet, and — 

being the lime which the passage lakes. From (1) and (2)
is found

(3)
1

10

The direction of the path of the particle after the held
is left is determined by

(4)

The coordinates of the particle al the moment t (t > i0) are

(5) 
and

X = D (I — Q

(6)
from which

U = —

(7) l)y 1 • dIy = —‘X = — i. II------2-.r.i> 10 to to in ir

If the field is constant and its intensity equal lo II and 
the current varies with time according to

(8)
(7) becomes

i = /■(/)

(9) " 10 in i>-

The equation of the wave line at an arbitrary moment 
/ is found by eliminating t0 from (9) and (5). It is
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(10)

In the following way it is seen from (10) that the wave 
proceeds in the direction of the .r-axis with the velocity 
V, thus the velocity oí the original jet. The intersection 
with the .r-axis is determined by

If now t   = a is a value satisfying (11), it follows 

that after the lapse of dt the point of intersection has 
been moved forward by d.v where

(12)

from which

(13)

1 he expression (10) may also be looked on as repre
senting the motion of the point of intersection between the 
jet-wave and a line or plane perpendicular to the .r-axis 
at a distance x from the field. It is seen that the said 
motion is given by just the same function of lime as the 

current, only it is delayed by — seconds in relation to 
v 

the current.

The motion thus pictures the current. On this fact the jet
wave oscillograph is based. In the latter an image of the 
jet-wave is projected on to a wall parallel to the plane of the 
wave. In the wall is a slit perpendicular to the axis of the ori
ginal jet. Behind the slit a photographic plate or film is moved 
with constant velocity in a direction perpendicular to the slit. 
On the plate the projection thus traces a picture of the current 
passed through the jet.
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3. The Wave produced by a simple alternating Current.
We shall now consider some few particular cases. In 

the first instance we shall assume the wave to be produced 
by a simple alternating current.
Z X . . 2;r(1) z = Zsinwt = /sin —i.

The equation of the jet-wave then becomes

(2)
1 HI

10 m u2 dl’X- sin co

The expression obviously represents a sine-sliaped wave 
fig. 4 which travels on with 
at the same time increasing

Fig. 4. Wave produced by a simple 
alternating Current.

the velocity v, the amplitude 
proportionally to the distance 
from the field, that is to say, 
the starting-point of the wave. 
During its motion the wave- 
tops touch the two lines

rn — _i_ 1 111 //(3) y — ± —----- 2 ’ ’x >10 m d

which form an angle 6 with 
the axis of the original jet
given by
ZO/ a - I 1 HI(4) tg 0 — ±—----- gni 10 ni V •dl=±a.

Obviously (3) represents the 
lines which the jet would 
stationarily follow if direct 
currents ± I, thus currents

equal to the maximum value of the alternating current, 
were sent through the jet. Generally tg 0 found from (4) is 
taken to measure the amplitude of the jet-wave and is denoted 
by a. If introduced in (2) this latter expression becomes
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(5) •V =

while the equations of the lines limiting the wave track 
may be written

(6) y = ± ax.

From (5) is seen that the wave will, at a given moment, 
cut the .r-axis in a series of points, the zero-points, deter
mined by

(7) sin co = 0.

Obviously these points are situated at a distance from 
each other given by 

(8)
2
2

2 is called the wave-length of the wave. On the other 
hand it is seen from (5) and (6) that the points t2, t3, 
fig. 4, at which the wave touches the lines (6) are deter
mined by

(9) = 1.

They are thus to be found half-way between the con
secutive zero-points of the wave. The lops of the wave, 
m1, m2, m3, fig. 4, that is to say the points at which ~^~ = 0, 

are situated a little farther on in the direction of the motion.
In order to see this we may preferably consider the wave 

at the moment f = 0. Al this juncture — 0 at the points 
determined by

(10)
(JÙÜC

V

As known, this equation is solved graphically by 
finding the point of intersection between the curves
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is seen that the solutions areII

(12)

while lhe zero-points in the case considered are given by 

(13)

regard Io

(14)

z

is lhe less the higher lhe
where /> stands for lhe 
quantity which tends 
number p. From (11)

(15) 

or by

z,r = p-4

z
9 ’

odd numbers 1, 3, 5 . . . while ô is a
lo zero and
follows

x = p

+ <5
71

From (14) it is seen that the vibrating point of ii 
section will pass the zero-point simultaneously with 
current at a series of distances of lhe plane given by

0, 1, 2, 3. . .
indicated above, be con-

2

9 ’

where p indicates lhe numbers
The expression (2) may, as

sidered as describing the motion of lhe point of intersection 
between lhe wave and a plane at a distance x from lhe 
field and perpendicular lo lhe axis of lhe original jet. Il 
is seen that the said point performs harmonic vibrations. 
The zero-point of lhe latter is lhe point of intersection 
with the original jet. The vibrations are of course syn
chronous with the alternating current from which lhe wave 
originales. Bul they are delayed in phase with 
lhe current, and lhe phase-lagging is

cp = M — = 2.T ’ , .
I) 2

(û X
I)

(t) X , (t) X
ii = tq— and q =-----' p ' i)
given by

(ID
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(16) æ = /)•-,

where p indicates the numbers 1, 2, 3, 4 . . . The points deter
mined by (16) may be called the nodes. With a short 
held they thus form a series of points separated by the 

constant distance —. Obviously, if the wave is produced by 

a current z = /sinæ/, being zero at the moment t — 0, the 
nodes are simply determined by the points of intersection 
between the re-axis and the wave at the moment t = 0.

It should be noted that the wave considered in the 
present paragraph might as well have been produced by 
intersection of an alternating field and a constant current 
flowing in the jet.

On the vibratory motion of the hitting point of the jet-wave 
in a plane perpendicular to the axis of the original jet, and on 
tbe easily adjustable phase-displacement between the said mo
tion and the current by which the wave is produced, the jet
wave commutators and rectifiers are based. The commu
tator generally serves for commutation of a voltage synchronous 
with the said current. The commutation is, as a rule, to take 
¡dace nearly at the moment at which the voltage changes its 
sign. Tliis is achieved by moving the commutator-electrode, con
sisting of two insulated parts symmetrically placed with regard to 
the axis of the jet-wave, in the direction of the said axis.

4. Geometrical Construction of the Jet-Wave.
From the expressions (2) and (4) in the previous para

graph it is seen that the angle H which the path of the 
consecutive jet-particles forms with the axis of the original 
jet varies periodically with time according to the expression

(1) tgH — tgOm • sin M t

a suitable zero-point for the time being assumed. It is 
therefore a simple matter to construct the paths of a series
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of consecutive particles. In fig. 5 this has been done in an
easily comprehensible way for 16

other with a time-difference —. lb

particles following each

The paths are marked

0, 1, 2 ... 16. Now let the first particle 0 have reached the

Fig. 5. Construction of Jet-Wave.

point 0 of the axis al a given moment. The next particle 1 
Zwill then be — behind the particle 0 on track 1, the 
. zparticle 2 again — behind particle 1 on path 2 and so 

on. In this way a series of points of the wave at the mo
ment considered is found, and the wave itself is easily 
traced. The picture in fig. 5 does not, however, give a true 
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conception of an electromagnetically produced wave with 
an amplitude of the size shown. For the theory on which 
the construction is based holds good only for quite small 
amplitudes. The figure is therefore merely to be taken as 
illustrative of the way of constructing waves with small 
amplitudes.

5. The Jet-Wave in the Case of alternating Current and 
alternating Field.

If both current and Held vary periodically say accord
ing to
( 1 ) i = I sin (o t

(2) H = ZT0 sin (<o Z + y)

it is found from the general theory in paragraph 2 that 
the wave produced may be represented by

(3)
?/ =

2 IH()
10 m v2

1
20

IH0 ..- drX- sin m ir

• dZ-æ- cos (f>

From this expression it is seen that a wave is formed 
which has half the wave-length of that produced by a con
stant field. The wave proceeds in a direction which forms an 
angle 0O with the direction of the original jet determined by

(4) •dZ-cos

The angle is thus zero for y = — . In that case the wave 
becomes
(5) V = Å —°2 dZ-æ-sin 2« —

•7 20 m ir \ V /

and moves on in the direction of the original jet.
It is seen that the deflection or rather might
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betaken as a measure of cos y. An indicator for phase- 
displacement might obviously be based on the relation (4).

6. Jet-Wave produced by a direct Current and a 
rotating Field.

with

the
may be represented by

current Zo is sent throug 
original direction .r,

may
direction of the //-axis and "-axis respectively, 

component fields

Finally we shall consider the wave produced if a direct 
hl the jet while the latter with the 

tig. 6, passes a rotating field of the 
period T, thus of the cyclic frequency 

2/r ” .
(a = — . We may assume that direc

tion of rotation as positive which seen 
against the positive direction of the 
.r-axis coincides with that of a watch. 
With a held rotating in a positive 
direction the mechanical motive force 

F = /UH() acting on one cm of the

regard to the field-vector by the angle —. 

be produced by means of two periodic

Fig. 6. Theory of Wave 
produced by direct Cur
rent in Interaction with 

a rotating Field.

(1) Hfl = //„-cos m t
(2) H_ = IIn sin m I.

Each field produces its motion and the actual motion 
is the resultant of the two. The problem has thus in a 
way already been solved. The two component waves are

(3)

(4)

The resultant wave, obviously, has the shape of a screw
line with a radius increasing in proportion to the distance
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x from the held. Ils point of intersection with a plane per
pendicular to the æ-axis traces a circle with the radius

(5)
= J_ I.H.

1 0 771 ir dl'X.

The radius to the point of intersection is delayed with
regard to the motive force by the angle

(6)

On the motion here considered the rotating jet-wave 
commutator is based.

7. Jet-Wave of small Amplitude with non-laminar Field.
We now proceed to consider the wave with a field of an 

extension L which is not small compared to the wave-length
2. The amplitude again is assumed to 
be relatively small as in the previous 
cases and again a current ¿ =/sin coi 
is sent through the jet. One way of 
treating the problem is to divide the 
field into laminae dl as indicated in 
fig. 7 and to sum up the deviations 
z/z/ to which the said laminae give 
rise. The total deflection at a distance 
x from the entrance of the field and 
inside the same, x<L, is thus, ac
cording to the theory given above, 
determined by

Fig. 7. Theory of Wave 
with non-laminar Field.

(1)

Outside the field the deviation is given by
Vid. Selsk. Math.-fys. Medd. IX, 2. 2
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(2) y = (æ —Z) sin ft) fí —-—^<//.
lO/n/ZV \ p /

In both cases / indicates the distance from the entrance 
of the field, which is assumed homogeneous, to the arbitrary 
lamina dl.

8. The Jet-Wave inside the Field.
From (1) in paragraph 7 is found by integration

(1) 
where

(2)

(3)

(4)

ïoS^2 + w2sin(“'_ÿ)
ft) X . ft) X , MX *A = — sm ------ F cos------- 1

V n v
ri MX MX . MXli = — cos — — sm

p p p

, B
= _A’

Again the point of intersection of the wave with a plane 
perpendicular to the original jet will vibrate synchronously 
with the alternating current but lagging in phase with regard 
to the same. The point will pass the zero-point simultane
ously with the current at a series of positions x of the said 
plane, the nodes, represented by 

(5)
ft) X ft) x

The nodes are, thus, no longer equidistant. Practically, 
however, they become so at greater distances from the en
trance to the held, as will be seen from the well-known 
graphical way of solving (5). The final distance between 
two nodes, is, as with a short field,

(6)
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The amplitude-curves, that is to say, the curves inside 
which the wave proceeds, are given by

(7)

IH 
m v*

■ J/A2 + B2 =

± Å ^2 — SÍn ^')2 + (1 — COS ¿')2 ,
10 m w

ß' being introduced for — . Obviously with increasing dis

tance x the curves approach the two straight lines

(8) y = ± 1 LH
10 77110 2 ‘

A good approximation is

(9) y = ±¿ñS(/í'-sin/!')-

The same is true for 
the curve represented 
by the exact expression 
(7). We may conclude 
that if the field is cut 

or at distances from 
the entrance to the field 
given by

(11) x = 0, 2, 22. . .

The curve y = ß'—sinß' is shown in fig. 8. It forms a kind 
1 IH of staircase profile ascending along the line 7/ = — -----*ß',1 0 771 (tí 

and having horizontal 
tangents at the equidis
tant points

(10) /?' — 0,2tt, 4/r . . .

off at one of the distances given by (11), we shall obtain 
a wave with a constant amplitude outside the field.

2*
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9. The Jet-Wave outside the Field.
For the jet-wave outside the field the following ex

pression is found by integration of (2) paragraph 7:

For æ = L this expression gives the same value for y 
as does the formula (7) paragraph 8 for the wave inside 
the field. It shows that the motion of the point of inter
section with a plane perpendicular to the original jet is 
synchronous with the current by which the wave is pro
duced. The phase-lagging, however, is now given by

where

V i>
or

7T n . TT /-cos/-—sin/-
(4) = \

tt sin/-

zil the length of the field measured with — as unit is in

dicated by / and if the distance from the centre of the 
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field to the plane measured in the same unit, thus

2
is denoted by /?. We shall now discuss the wave considered 
in detail.

10. Amplitude of Wave outside the Field.
As will be seen, the amplitude-curve may be expressed by

(1) /2 III
10 771ft)2 sin / ?)■

With increasing distance ß from the centre of the held
(1) tends to

(2) 
or to

(3)

.r0 standing

This expression may he compared with the formula 
for the amplitude with a short field, thus with (3) para
graph 3. The two expressions are identical apart from the

factor provided the distances, in

laminar field, are measured from the

the case of the non

centre of the field.
Thus at greater distances the formula corresponding to a 
short field may be used provided the result is reduced by 
applying the factor 

(4)
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Willi special extensions of the held particular waves 
are obtained. If for instance / assumes such values that 
the first member under the square root in (1) vanishes, 
that is to say, if
(5) tg y I = y^,

then (2) is exactly true for all distances d and the phase
displacement y', (3) paragraph 9, also vanishes so that 

the whole phase-lagging is that expressed In

the said case, therefore, the wave is identical with the wave
with a short tield, the length dl of which is determined by

(6)

The first length of the field satisfying (5) is obviously
JT 71determined hv a value of somewhat smaller than 3 —

thus by y a little smaller than 3.
If on the other hand y has such a value that

thus if y is equal to 2, 4, 6 etc. then

(8)
i ih /zy

10 m v2, 7T \2 / ’

That is to say, the amplitude is constant outside the 
field as predicted in paragraph 8. Al the same lime tg g>' = zc 

7Tor (p = p‘ — ‘ (p = 1, 3, 5 . . .) and the formula for the 

wave becomes
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(9)
1 IH

10 m i?

A wave with constant amplitude may thus be electro- 
magnetically produced, but a rather long field must be 
employed. It is easy to see how the amplitude becomes 
constant. The shortest field giving the wave in question is 
just a wave-length Z. It thus takes a particle a period to 
pass the field. The velocity in the positive direction of 
the y-axis which the particle obtains during the one half 
of the passage is therefore lost during the other. So the 
particle arrives at the boundary of the lield with no velocity 
perpendicular to the direction of the original jet. But ob
viously it arrives with a certain deviation, the deviation 
due to the first half of the field not being compensated 
by the opposite deviation to which the second half gives 
rise, simply because the latter part of the field is closer to 
the exit of the field than the former.

11. The Variation of the Amplitude with the Extension of 
the Field at a given Distance from the Centre of the Field.

In addition to the general discussion in the preceding 
paragraph we may consider the variation of the amplitude 
with the extension of the field at a given distance from 
the centre of the field. We may in (1) paragraph 10 write

(1) = and =

with which notations the amplitude is

o 111  _____ __
(3) y = Yx —2 ’ k cos / ~ sin r')2 + sin r')2-10 m (»

We find that y is minimum for the values of given by
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(4)
or for
(5)

sin / = 0

L = p-X(p = 1, 2, 3 ... )

thus for the values of L giving waves of constant amplitude, 
the latter, as shown, being expressed by

(6)
i ih

10 m i)2, 7t \2 / '

,/2
(8)

(H)

The equation (8) may he solved graphically by deter
mining the points of intersection between the two curves

The amplitude is maximum for the field-extensions 
determined by
(7) (yd/2 — /2) cos / + / sin / = 0
thus for 

If for instance ß‘ = n ß = 3rr, corresponding to the am- 
32

plitude being considered at a distance — from the centre 

of the field, it is found that the amplitude is maximum 

for values of / close to and thus for extensions L 
) 3/

nearly equal to — and —. In both cases the amplitude is—
about the same, namely approximately

?/ = A “2 •

10 m M

. <_r--ra In r - —p—

(9) ?/' = tgy'
and

(10)
7 \

thus for ß' — 3tt very nearly

(12) 2 IH 1 III 3 _2
1 0 77? ft)2 ' 1 0 777 Z?2 2 7T
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Finally the amplitude 
in the case considered is 
maximum for a value of 
y somewhat greater than
5 71 . This is seen from tig. 9 

representing the graphical 
solution of (8) with regard 
to the root considered. It 
is seen that the solution 

is y = 20.95 • — corres-
7T ponding to L = 5.24 — .

In fig. 11 a complete 
graphical representation of 
the variation of the am
plitude with /' is given for 
ß' = 3 7i(/3 = 3). All three 
maximum-values of the 

Fig. 9. Graphical Solution of Maximum- 
Problem.

amplitude are very nearly identical. The value of the mini
mum-amplitude increases according to a straight line. From 
these facts it follows that the difference between maximum 
and minimum becomes the less the greater the extension of

+(/&'■'j) for ¿-ys-

Fig. 10. Variation of Amplitude with Field-Extension, = 3zr.
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the field. Furthermore the conclusion may he drawn from 
tig. 10 that if the greatest possible amplitude with the cheapest 
possible magnet is aimed at, an extension of the field equal 
to — = «y) should fie chosen.

12. Position of the Nodes with Fields of various Extensions.
We may finally discuss the positions of the nodes in 

their dependency of the extension of the field. According 
to paragraph 9, (2) the nodes are determined by

(1) rj) = ft — ft = p.7T(p = ()> i, 2, 3, . . .) , 

where with the notation in the previous paragraph

(2) tg w'
/ cos /— sin / 

/fsiiïy ~

The nodes are thus determined by

(3) tgft =
Y cos — sin 

ft sin ft

The values of ft satisfying (3) are found graphically 
as points of intersection between

(4) U' = y and (3) ft = tg ft,
where

ft cos ft — sin
C = ------------- ;------ ;----------- .sin y

In fig. 11 the solution is given for a series of values of
TT Å 0

ft = " T ■ For ft — 0 (£, — 0), c assumes the form —. The
2 Z ()

2
value is, however, easily seen to be 0. The nodes are thus 
determined as the points of intersection between the axis 
of abscissae and the tangent-curves or by ft = nß = prr, 
(p = l, 2, 3, . . .) corresponding to distances from the field
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equal to —,
22
2 * so on, as already found in the

discussion of the wave with a short field. If now the length

Solution of ■ -L^‘srnyLL

a Extension of field 1- j

b -

c .. .. L-^ï-%

Fig. 11. Graphical Determination of the Nodes.

of the field is increased, c will become, and remain, nega
tive and numerically increase steadily as long as

;/Z < 7T

that is to say as long as

L<2.
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The positions of the nodes are determined by tlie points 
of intersection between the tangent-curves and hyperbolas 
situated below the positive part of the axis of abscissae.

In tig. 11 the hyperbolas are drawn corresponding to 

/ = y (a), y = ~ (b), and / = By (c) or to L equal to 4 X 4-
z z _ 32 .

, 2 an(l 7 respectively. It should be noted that the dis

tances of the nodes from the centre of the field are ap
proximately the same as with a short Held all up to

at greater distances from the Held. For y' = ji (L = z), /g 
is oo thus <¡pz — (2/q 1)4 where stands for 1, 2, 3...

The positions of the nodes are now determined by

9- = (2/h+ —= P™,

2(/h-/>)Jrl = 2p2 + l = ¿z
2 2 7T ’ 

where p2 stands for 1, 2, 3 . . . The nodes are thus all dis

placed by y with regard to the positions with a short 

field. This is also seen from fig. 11 if we imagine the hyper
bolas extended infinitely. Now if / is increased beyond 
nr (/. beyond z), c becomes positive and the hyperbola 
gz = L , is situated above the axis of abscissae. For

A
y j z^ the hyperbola is d fig. 11. Again the

nodes are distributed approximately as with a short field. 
The constant c remains positive until the first of the field
extensions (greater than 0) which satisfy 

(8) tgr=r

(6)

from which

(7) ß



The Jet-Wave. 29

is reached. Al the said extension L, which is a little less 

than — 2, the nodes are distributed exactly as in the case 

of a short field. If the extension is made still greater the 
constant c again becomes negative and so on.

In tab. I which is derived from fig. 11 the distances 
/?15 /?2, /S3 from the centre of the field of the three first 
nodes are given corresponding to four values of the field
extension.

T a b 1 e I.

L fe ^3 1 fe — fe fe — fe

0 1.000 2.000 3.000 1.000 1.000

Â
4 0.981 1.988 2.994 1.007 1.006

2
2 0.894 1.950 2.975 1.056 1.025

3Â
4

0.695 1.830 2.918 1.135 1.088

It is seen from the last two additio-
2

nal columns how nearly equal to the 

distance between consecutive nodes is, 
even with fields of rather great ex
tension.

13. The Jet-wave produced by an 
oscillating Nozzle.

A jet-wave of the kind considered 
above, but subject to no restrictive 
assumption with regard to the size 
of the amplitude, may be produced 
by means of an oscillating nozzle. In 
fig. 12 AT indicates a nozzle which per

Fig. 12. Wave produced 
by an oscillating Nozzle.
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forms a traiislatory motion perpendicular to the axis of 
the nozzle, the motion being determined by

(1) >' = /■(/).

A jet-particle which leaves the jet-hole at the moment 
/() will, at the distance æ from the nozzle, exhibit a devi
ation with regard to the axis of the said nozzle determined, 
as seen from the figure, by

(2) y = f(t0) + - /■' (70),

(i0) standing for the velocity at the moment i0, and 

/? for the velocity of the jet. If furthermore the distance æ 
has been reached at the moment /, then

(3)

The expression for the wave produced is found by 
eliminating i0 from (2) and (3). It is

(4) y =

If now, particularly

then

(6)

where

y

Y = Yo sin m t

sin at '--1 d— m cos co ( /-æy
L \I’J v \ "/j

y(7)
M X M X-----arc tq — .D D

The amplitude-curve of the wave is expressed by 

U = Yo(8)



or by

(9)
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It is thus a hyperbola with the axis To and — = —

. Al greater distances from 

the amplitude-curve may be represented by

. , ,F .TW , xr
(Kl) y — ± 10 — — ± * °

thus by two straight lines.
The formula (6) may also be conceived as 

of the motion of the point of intersection between the jet
wave and a plane perpendicular to the axis of the original 
jet. The motion is harmonic like that of the nozzle but 
lags in phase with regard to the latter. The phase-displace
ment is zero or tt at the points at which the wave cuts 
the x-axis at the moment t = 0, that is to say, at the points 
determined by

. .r x(11) tg m — = M — .V V

Attention may be drawn to the fact that the nodes in
side the field of an electromagnetically produced wave were 
determined by just the same equation ((5) paragraph 8), 
.r being the distance from the entrance to the field.

If the deviation of the particle is measured relatively 
to the axis of the moving nozzle it is expressed by

02) y = kO-m)]

(compare fig. 12). With harmonic oscillation of the nozzle 
the equation of the jet-wave in the oscillating system of 
coordinate is

the jet-hole

the eauation



32 Nr. 2. Jul. Hartmann:

The wave is seen lo be identical with an electromag- 
netically produced wave of small amplitude inside the field 
provided (paragraph 8)

£ IH
10 m z»2 '

It has thus already been discussed above.

On the wave-motion considered in the present paragraph the 
jet-wave accelerometer is based1. If /(/) in (12) is replaced 
by the first three terms of the series

( 15) /•(/) = /(/o) + (/ - /o) r (/o) + 1 (/ - /o)2 f" (/o) + -

where t — tQ = —, (12) may be written
Z) J

(16) y = -O'"«») =

it being assumed that the displacement of the nozzle is small 
and that y is measured so close lo the nozzle that the members 
of higher order of (15) may be neglected. It is thus seen that the 
acceleration f" (Jo) of the nozzle or of any body to which the 
nozzle is attached may be registered by the relative motion of 
a point of the jet-wave close to the nozzle.

On the other hand it is seen that (12) at greater distances 
assumes the shape
(17) !l = ^f'W

provided again that the displacement of the nozzle is kept within 
certain limits. The velocity of a body to which the nozzle is at
tached is thus registered by the relative motion of a point of the 
jet-wave chosen not too close to the nozzle.

Nature, June 6, 1925, and Phil. Mag., vol. Ill, 1073.
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CHAPTER II
The Jet-Wave of large Amplitude.

1. The Jet-Wave in the Case of a laminar Field.
We now proceed to consider jet-waves of larger am

plitudes and shall commence with a wave produced by a 
laminar field i. e. a field the 
extension dl of which is so 
small that the current used in 
the production of the wave may 
be considered constant during 
the passage of a small particle 
./.r of the jet. While, in the 
building up of the theory in the 
case of small amplitudes, we 
were justified in assuming the 
mechanical force, acting on the 
jet-particle, perpendicular to the 
axis of the original jet, this as
sumption can now no longer be 
maintained. During the passage the particle six of the jet 
will be attacked by a force

(1) K = ~iHJx,

where i is the value of the current during the passage and 
H is the intensity of the homogeneous field. The force K

Fig. 13. Theory of Wave with 
short Field.

Vid. Selsk. Math.-fys. Medd. IX, 2. 3
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(2)
I'

the original

(3)

IH
(4) in

jet is determined byIf the current through the

(5) i = I sin co t

(6)

but it will
radius o of

m being as in Chapt. I the mass per cm of 
jet. From (1) and (2) we derive

and if the particle which passes the field at the moment 
t0 is considered, the deflection of the path is expressed by

-5-d/.
v

1
o 10 m ir ’

After having left the field the particle will proceed 
along a straight line forming an angle H with the direction 
of the original jet, where obviously

assume to be the same, to the direction 
said particle. It is therefore unable to 
velocity i) of the particle,
follow a circular path the

1 IH

• n dl sin H =

is perpendicular to the field and to the direction of ./.r 
or, what we shall 
of motion of the 
alter the original 
force the latter to
which is determined by

in-I x- ir ,r
= K,

sin 6» = • dl - sin m L.
10 in v¿

1
10

At a later moment t the particle will have reached a 
distance r from the field, where

(7) r = p(i—i0).

Eliminating t0 from (6) and (7) we find the formula 
of the jet-wave. It is
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(8)
sin 6 • sin to

Obviously (8) represents a wave proceeding between 
two straight lines 6 — ± #/n where 0 is seen to be the sta
tionary angle of deflection for a jet carrying a constant 
current I. The wave-length is determined by 

(9) Â = p- T

as in the case of a wave of small amplitude. The equation 
derived for the latter wave was

tg(10) tg 0m • sin ft)

The latter formula may be used instead of (8) for the 
determination of the amplitude 6 as long as the difference 
between sin öi?) and tg6m may be neglected. For 0 = 10 
sin 0m =• 0.1736 and tg0m — 0.1763. The difference in this 
case is 0.0027 or ab. 1.5 per cent. For 0m — 20 the différ
ence is already 6.3 per cent.

2. Construction of the Jet-Wave.
Fig. 14 illustrates how a jet-wave of given angular am

plitude is constructed. The angle 0m is laid down to
each side of the direction of the original jet OP. With an 
arbitrary part OA of the line OP as diameter a circle is 
drawn. It cuts the line OC limiting the track of the wave 
in the point B. The chord AB is swung down round A on 
the line CC perpendicular to OA. In this way the end of 
the chord AB conies down al B'. We may now for in
stance consider 17 consecutive particles of the jet follow-

3
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set out on

sinare as

is taken
construction of the pieces is indicated in the figure.

0 8

AB'
known
Now the ends of the same pieces (0), 1, 2, 3, ... , 15, (16)

the line B'BZ from the point A. The pieces

, S1111--, sin 2--, ..., sin lo-~, sill 16- — .
o o o o

ing each other at a mutual distance of - . In order to16
determine the rectilinear paths of the said particles, 17 pieces 
are

unit length. The well-Io represent the

are swung hack round A on the circle OB A. Through the 
points thus obtained the tracks of the particles in question 
pass. They may be numbered 0, 1, 2, . . . , 15, 16. Now as
suming that at a given moment particle 0 has arrived at A
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on the track OA, then particle 1 will be on track 1 nearer 

to the point 0 by the distance —, particle 2 will be on 

track 2 nearer by —- 1° Û than particle 1 etc. The way

Fig. 15. Jet-Wave, phot.

to lind the positions of the consecutive particles is thus 
obvious. Backwards from A we may divide OA in parts,

Â ...each of the length — , and mark the points of division by

1, 2, 3, . . . Then in order to find the position of a certain 
particle, we shall only have to project the point of division 
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of the corresponding number on to the track of the same 
number by means of a circle with its centre at ().

A main difference between the construction of the wave 
with small amplitude (or of the wave produced by means 
of a nozzle performing transía tory oscillations) and that 
of the wave with large amplitude lies in the way of pro
jecting the points of division of the jet-axis on to the tracks. 
In the first case the projection takes place by lines at right 
angles with the said axis, in the second by circles. The 
first type of waves may accordingly be characterized as 
the rectangular type while the second may be termed 
the circular type. The latter type has the peculiarity 
of the wave-fronts being markedly convex in the direc
tion of the motion. How close the actual jet-wave comes 
to the shape of the constructed wave is seen from tig. 15, 
representing an instantaneous photograph of a wave pro
duced electromagnetically from a mercury-jet.

3. The Jet-Wave in the Case of a non-laminar Field.
General Theory.

We now proceed to consider the wave with a field 
which is not laminar. Again we shall assume the wave to

Fig. 16. Theory of Wave with 
non-laminar Field.

be produced by the current 
i = I sin mt in interaction 
with a constant and homo
geneous field. The extension 
of the latter in the direction 
of the original jet is L, 
fig. 16.

During the motion through 
the lamina dx of the field 
the path of the particle con- 
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sidered will suffer a change of direction d0, given, as will 
be seen from the figure, by 

(1)

where

<2) 

m indicating as above the mass per cm of the original 
jet. From (1) and (2) is found

(3) de =
i
io

HI
m ir

■ v sin m t • dt

and by integration

(4)
1 HI

10 in v2
-— (cos ft) t0 — COS ft) 0
2 n

— 0O (cos ft) /() — COS ft) f) ,

i0 being the moment at which the particle enters the field. 
The equation (4) gives the direction of the motion of a 
particle at any point of the path provided it is known at 
what moment t the particle is al the point in question. 
Especially it is possible to determine the direction of the 
motion at the lower boundary of the field if the time of 
passage of the field is known. We shall now derive a for
mula expressing the distance x from the upper boundary 
of the field as a function of time.

From fig. 16 it is seen that

(5) dx = ds• cos e = vdtcos 0.

If e is kept below a certain limit we may put

e2
(6) cos e = 1 — — .
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The

per cent.

cos 3 
value

determined by (6) is introduced 
of 3 is then taken from (4), an

^4
error committed is of the order thus, with j 24

384 °r °
If the value of

in (5) and if the
integration gives

(7)

or

(8)

X = (1 — qj' — COS2 <0 /,) V (I — /„)

1 p 0 cos co f0 (sin co i—sin co/0) co
n2

— i) " (sin 2 co / — sin 2 co /0)8 co

— Á
2 7T

cos to /() (sin to I — sin co /0)

— Â * _° - (sin 2 co f — sin 2 co /0). 10 Tt

Finally a formula for the deviation y perpendicular to 
the original jet of the particle is derived. From fig. 16 it 
appears that

(9) dy = ds-sin 3 = i>dt-sin 3.

An approximation which will suffice in most cases is 
obtained bv replacing sin 3 by 3. The error is of the order

i. e. ab. 2 per cent, for 3 — Apparently this error is 

not quite small but as y in most practical cases is small, 
the error is only of relatively small influence on the am
plitude outside the field at greater distances from the same. 
Introducing the value of 3 from (4) and integrating, we find

p 3,} . . x
—- (sm CO t — Sill w t^) 

co
(10) y — d30 (t— /0) • cos co /0
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or

(11) y = ¿ o — z
0n z .- (sin mí —

2 71
sin w/0) .

For small values of the theory now developed coin
cides with the theory for a wave of small amplitude in

Fig. 17. Difference between Waves calculated from the exact Theory 
and from the Theory with small Amplitude.

side a field of great extension. If the members with 6% of
(7) may be neglected, the formula is reduced to

(12) .r=p(/-/0)

and by eliminating t0 from (11) and (12) we find for the 
equation of the wave
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II
(13)

which m¡ 
in Chapt. 
pression (13) leads lo a false picture of the wave both in
side and outside the field. Fig. 17 illustrates this. The wave 
A is calculated on the basis of the complete theory, while 
B is found by applying the theory for small amplitudes.

1 III /In both cases the same value for — —9 • — = i90 is as-

sumed. By employing the theory for small amplitudes a 
loo small value of the amplitude is found, and at the same 
time the zero points or nodes are displaced somewhat with 
regard to the true nodes, i. e. the points of intersection 
between A and the axis of the wave. The points Kt and I\.¿ 
represent the positions of the nodes as they would be with 
a laminar field in the centre of the actual field. How pic
tures like A in lig. 17 are produced, will now be explained.

4. Production of Wave-Pictures on the Basis of the 
complete Theory.

By means of the theory of paragraph 3 it is compara
tively easy to trace jet-waves corresponding to various 
values of field-length and amplitude. It is done by calcul
ating the path of a series of particles characterised by the 
moment /0 at which they enter the field. The particles are 
appropriately chosen equidistant, distributed over half a 
wave-length, i. e. the values ¿0 are distributed evenly over 
half a period. Corresponding to each value of t0 a series 
of equidistant values are ascribed to t in the formulae (8)
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Fig. 20. Jet-wave Diagram L = —, — 0.250.



46 Nr. 2. Jul. Hartmann:

and (11) of paragraph 3, and so a series of .r- and //-values 
of the path is found. Furthermore the moment of arrival 
tu of the particle at the lower boundary of the field is 
found by extra- or interpolation. If then t is introduced 
in (4) paragraph 3, the direction of the outside rectilinear 
path is determined. It being known that the particle moves 
on in the path with the velocity n of the original jet, it 
is also known at what point of the path the particle is 
found at any moment. If now the positions of a series of 
particles at a given moment are marked, the wave at the 
said moment may be drawn by tracing a curve through 
the said positions.

In the way here indicated the wave-pictures in fig. 18 
—20 have been produced. The direction of the paths out
side the fields are staled in tab. I. Fig. 18 corresponds to 
a field of half a wave-length and to 6>0 — 0.250. The paths 
numbered 0, 1, 2, ..., 15, correspond to particles entering

T T Tthe field at the moments 0, 1- , 2- , ..., 15- — . (The
16 16 16

current is supposed to be i = / sin co t). On the paths the 
positions at which the particles are found half a period 
after their entrance into the field are marked by circles. 
It thus takes a little more than half a period for a par
ticle to pass the field, and the more time the more sloping 
the path is. The wave proceeds within certain symmetrical 
boundary-curves, the amplitude curves, which of course 
are envelopes of the outermost paths. In tig. 18 the said 
curves are stippled. Their points have been determined 
graph ically by measuring at a series of distances from the 
centre of the field the distances y from the axis of the 
wave to the various paths. The values of y have then been 
marked out in a rectangular system of coordinates in their 
dependency of the number of the path, and so the maximum
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value of y has been found. In fig. 18 the amplitude-curves 
deviate markedly from the outermost paths. In fig. 19 cor-

Table I.

<0 ¿I
tg fi

0 8.44 0.496 0.542
1 9.43 0.443 0.475 /. = A ô0= 0.250
2 10.52 0.314 0.324
3 11.28 0.166 0.168 tø Öm = 0.546
4 12.14 0.013 0.013 Path /0 = — 0.25
5 13.02 - 0.195 — 0.201 16
6 14.10 0.360 — 0.376 % = 0.500
7 15.25 - 0.470 — 0.508

0 4.06 0.360 0.376
1 5.12 0.473 0.512 L — 4 , 00 = 0.351
2 6.20 0.515 0.566 4
3 7.17 0.466 0.503 tø öm = 0.566
4 8.13 0.350 0.366 Path io = 2 —
5 9.06 0.186 0.189 16
6 10.00 0.000 0.000 = 0.515
7 11.02 — 0.193 - 0.195

0 4.04 0.253 0.259
1 4.06 0.333 0.346 L = ; , 00= 0.250
2 4.10 0.360 0.377 4
3 4.10 0.330 0.343 = 0.377
4 4.06 0.250 0.255 Path T

io = 2 —
5 4.04 0.134 0.134 16
6 4.01 — 0.001 — 0.001 öm = 0.360
7 4.00 — 0.135 — 0.136

responding to a field-length — the amplitude-curves coin

cide almost exactly with the outermost paths, for which 

t0 is 2—and 10 — respectively, so the amplitude curves 

are not drawn. The same is true in the case shown in fig. 20,
where the outermost paths likewise correspond to t0 equal
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to 2— and 10 -- respectively, lb lb
indicate maximum-values of H

In the table 0 and 

and tg 6 respectively.

ta 0m

5. Geometric Construction of the Jet-Wave in the Case
of a non-laminar Field.

The paths of the particles and so the wave may also
geometrically as in

Fig. 21. Geometric Construction of Wave.

be approximately determined purely
dicated in fig. 21. 
The field is divided 
into conveniently 
thin laminae or 
zones 1, 2, 3, . . . 
Inside each of the 
said zones the path 

is assumed to be a circle with a radius determined by

(1) 1 1 iH 
(>10 m p2 ’

i being the average value of the current during the pas
sage of the zone. The centre of curvature for the path 
through the first zone is situated in the uppermost boundary 
of the field. The centre of curvature C.2 for the path through 
zone 2 is assumed to he on the line CLa2, a2 being the 
last point of the path inside zone 1 etc. In fig. 22 a—b an 
example of the construction is given, fig. 22 a showing 16 
equidistant paths inside the field and fig. 22 b giving the 
corresponding paths outside the field and a complete wave
picture. In the construction the field was divided into 8 
zones and it was assumed that the passage of each zone 

took — sec. The current was supposed to be z = sin w/ and 

the radius of curvature, measured in cm, was chosen 10 
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times the reciprocal value of sin w t at the moment al which 
the particle is in the middle of the zone in question. Fur
thermore Â was taken to be 16 cm. With these dimensions 

is very nearly the same as in fig. 18, namely ah. 0.250.
7//For to the factor 10 corresponds the value 1 of-----¿ and

m v2.

Fig. 22 a. Instance of Construction.

1 in ) 1 i
thus with Â = 16, the value of —---- 9 is---- — =

10 m vA 2;r 10 2zr
0.254. Very nearly the same paths and the same wave 
should therefore be expected in fig. 18 and in fig. 22 a—b. 
In a comparison it was found that path 1 in the original 
construction fig. 22 a cuts the lower boundary of the field 
5.26 cm. from the axis of the wave, while the corresponding 
distance in fig. 18 was 5.16 cm., the difference being thus 
ah. 2 per cent. i. e. the same as between the values of #0.

Vidènsk. Selsk. Math.-fys. Medd. IX, 2. 4
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Fig. 221). Instance of Construction.
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The influence of the width of the zones in the geometric 
construction was examined. It was found that in a field of 
Â the slope ol path 1 outside the field varied as follows 

with the number of zones.

Table II.

Number of Zones
it/ f) 6with field of -

2

4 0.551 0.504
8 0.536 0.493

16 0.517 0.477
00 0.500 0.463

The values of tg ft and ft corresponding to an infinite 
number of zones was found by means of an extrapolation 
of rather large uncertainty. From the preceding paragraph 
we conclude that the true value of ft should be ab. 0.452. 
It thus seems that the construction employing zones of
Z .

in the case considered, that is to say with a rather 

large amplitude, leads to a comparatively large error, say 
8—10 per cent., in the determination of the slope of the 
paths and thereby also in the determination of the am
plitude. Otherwise the constructive method has the ad
vantage of affording a general means for the determination 
of the wave also in cases where the field is not homo
geneous.

6. Approximate Theory of the Jet-Wave with a 
non-laminar Field.

If the non-laminar field is not too long in the direction 

of the jet, say not longer than — , and if furthermore the
4 

4
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amplitude is not too large, compare tab. IV, the equation 
of the wave may with fairly good exactness be determined 
as follows.

It is assumed that the wave will be nearly the same 
as would be produced if the current during the passage 
of each particle were constant and equal to the average 
value of the actual current during the said passage. Further
more it is assumed that the passage of all particles takes 

the same time, namely —, thus the time for the passage 

of a particle of the original jet. For the particle which at
of the field the said

of the current is

(1)

/ standing

interaction withpath due to m

/

(2)
1

10 m ir

the moment /() is at the middle-plane 
average value

IH T Si"^
2 * *

I-\
7T

sm/-
I--------- sin to /0

7T

2

- • sin ft) /().

Z 2

Prolonged backwards the path will generally intersect 
the axis of the original jet nearly al the centre of the field. 
If therefore the distance from the said point to an arbitrary 
point of the wave is indicated by r, it may be concluded 
from (2) when compared with (6) paragraph 1 that the 
equation of the jet-wave may be written
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(3)

of the is thus deterwave

(4)

or it is the a fictive laminarwithsame as

of waves with small amplitudescase

III
m u2

0,n

sin bni

The angular amplitude 
mined by

71

Z2

71

L-------- -

of larger amplitudes that the wave 
with non-laminar field may be considered identical with 

sin 0m ■ sin m t

1
10

nsmz-
L----------. As in then

Z2
we find with waves

waves produced by a laminar field as long as the factor
71

smr-
may be considered small compared with 1. Some 

values of the said factor are given in tab. III.

Table III.

7T
Sm^ïï

71
7 2

0.1 0.994
0.2 0.984
0.3 0.962
0.4 0.936
0.5 0.902
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7. Comparison between the general and the approximate 
Theory.

In Tab. IV below, the absolute amplitude y at various 
distances ft from the centre of the field, and calculated 
from the approximate theory in the preceding paragraph, 
is compared with the corresponding amplitude measured 
in the wave pictures in fig. 18—20. The latter amplitude 
is stated under A, the former under B. The B-figures are 
determined from

(1) y = 2'tø^/n’

where fl is found from (4) paragraph 6. Obviously the 
approximate theory agrees excellently with the general

2 .
theory for field-lengths up to — and for amplitudes a = tg 0m 

up to 0.5 or even above.

Table IV.

• HÍ) A B

A , z = 32 cm.0.50 5.21 4.62 2

I
0.75 7.15 6.91 1 III Z
1.00 9.13 9.22 2ö0 = — •-----ö * — = 0.500

10 m u- 7i
1.50 13.18 13.84 T
2.00 17.44 18.47 tø0m = 0.546 with to =- —0.25- 16

7, — 32 cm.0.50 4.50 4.58 4

11
0.75 6.74 6.85 1 IH 7.
1.00 9.02 9.12 2 — 0.702

10 771 7>2 7T

1.50 13.60 13.72 T
2.00 18.12 18.29 f9 °m = 0.566 with to = 216

T Â , Â = 32 cm.0.50 3.03 3.02 L _ 4

III
0.75 4.53 4.54 1 III Â
1.00 6.04 6.04 2ö0 = 0.500

1 0 777 7?2 77
1.50 9.07 9.06 T
2.00 12.10 12.10 t(J = 0.377 with to = 2 —

“ 16
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We will now consider tlie question of the nodes. The 
wave represented by the approximate theory has its nodes 

Z 
al distances from the centre of the field given by p-~,

where p stands for 1, 2, ... In figs. 18—20 these points 
Z

are marked as Klf K2. With the field-length —, fig. 18, 

Kl and K2 are displaced rather considerably with regard 
to the nodes of the actual wave, that is to say, the points 
of intersection with the axis, the wave being represented
at
/<2

the shorter field in fig. 19 the displacement of K

the moment t — 0. And it may be noted that and 
are farther from the field than the actual nodes. With

1* . 12 2... 2L.J.______ 1 .2’ and
4

K2 is much smaller, and the same is true in the case shown 
Z

in fig. 20, in which the field-length is also — while the

amplitude is essentially less than in fig. 19. With field- 
Zlengths below — the nodes have very nearly the same po- 

sitions as with a laminar field, and obviously the said po
sitions practically do not depend on the amplitude.

Il is also of some interest to compare the positions of 
the nodes determined from the general theory with the 
positions as found from the theory in chapter I for small

Table V.

Nodes Length of
Field

General
Theory

Small Ampl.
Theory

1 2
2 0.878 0.894

2
2
2

1.934 1.950

1 2
4

0.980 0.981

2 2
4

1.988 1.988
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amplitudes. A comparison with a field-length of — is made 

in fig. 17. It may be supplemented by the figures in tab. V.
The figures given are the distances from the centre of 

the field measured in half wave-lengths. Those of column 
3 are derived from fig. 18—20. Obviously the small am
plitudes give very nearly the same positions of the nodes 
as the general theory, from which again may be concluded 
that the position of the nodes depends very little on the 
amplitude, a fact of great importance in the application of 
the waves in certain commutators.

8. The Jet-Wave with an inhomogeneous Field. The 
effective Length of the Field.

In all the cases considered above, the field was assumed 
to be homogeneous inside the space between the pole-pieces

Fig. 23. Actual Field.
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and of zero intensity outside the same. The actual mag
netic fields are not homogeneous, the intensity varying along 
the axis of the jet in a way of which fig. 23 may convey 
an idea. The picture originates from a magnet the width 
of the field of which was 6.4 mm while the height of the 
pole-pieces in the direction of the jet was 23 mm and the 
maximum intensity of the field 9350 Gauss. The contour 
of half of a pole-piece is indicated by hatching. Obviously 
the field already commences to decrease inside the space 
between the pole-pieces. On the other hand a considerable 
stray-field is present outside the latter. The result hereof 
is that as a rule the field acts as a homogeneous field of 
a greater extension than the height L of the pole-pieces, 
even if an intensity equal to the maximum value of the 
actual field is ascribed to the fictive homogeneous field. 
The length L of the latter may be spoken of as the effec
tive length of the actual field. According to what has been 
stated we may write

(1) Le = L + JL.

We now proceed to show how Le or ./L may be derived 
in cases where the field-curve of the actual field and the 
wave-length of the jet-wave are known.

Passing a zone of the extension dx in the direction of 
the original jet, fig. 24 a, the path of a particle suffers a 
change of direction dti determined (compare paragraph 3) by

(2)
iH 

m V2 • ds,

i being the value of the current during the passage and 
H the intensity of the field within the zone in question.. 
Furthermore
(3) dx — ds-cos 8.
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Hence

(4)
or

(5)
lu m v~

We shall now, as in the development of the approxim
ate theory in paragraph (6), assume that the amplitude 

5
Fig. 24 a—b. Calculation of effective Field-Length.

is determined by the path of greatest slope and that the 
latter corresponds to the particle which is at the centre of 
the field at the moment of maximum current. Furthermore 
we shall assume that the lime it lakes for a particle to 

pass the zone dx is — .A cosine-curve i, fig. 24 b, covering 
z .v

half a wave-length — is drawn with its top over the centre 

of the field (). Under the circumstances assumed it repre
sents the variation of the current during the passage of 
the particle the path of which determines the amplitude 0 . 
The latter amplitude is now calculated from
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1
(6) sin eni ,  —A II (x) cos x • dx,

10 m o y . z• .11

where I stands for the maximum value of the current and 
2 7Twhere Il (x) and cos ~z~ x are read on the curves in fig. 24 h. z

The integration is to be taken from the abscissa xr of the 
nozzle to a point x2 where the field intensity is practically 
zero. The amplitude given by (6) is now identified with 
the amplitude produced by the fictive homogeneous field 

2 . ...of length L, = y • — and with the maximum intensity H of 

the actual field. The latter amplitude is determined by

(7)
sinÖ,,,

1
10

1
10

IH
mu2

X .- • sin ye'Tr
n
2 ‘

Hence from (6) and (7) we gel for the determination of yc

With a view to illustration the effective length of the field 
was calculated for the case in fig. 23 and for a wave-length of 
13.30 cm. The nozzle was assumed to be at the abscissa — 1.9 cm 
and on the other side the integration was carried down to + 4.3 cm 
where a prolongation of the curve, not given in the figure, showed 
the field-intensity to be negligible. By means of an integration in 
which dx was chosen equal to 0.2 cm. it was found that

z»+4.3
\ H (.r) cos 2 yr j• cte = 25770
*—1.9 Z

from which
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sin 71
z'e 2

Tl

13?30

yc’^ — 0.709, ye = 0.451 and Le = 0.451-6.65 = 3.00 cm, while 
L was 2.30 cm and thus z/L = 0.70 cm.

9. The effective Field-Length with stationary Deflection
of the Jet-

It is of interest to determine the ciTeclive field-length 
in case of the jet carrying a constant current I so that a 
stationary deflection of the jet is produced. As seen from 
(5) in the preceding paragraph, the said deflection is given by

(1) sin^ -
1 I

10 m z? \ H(x)dx,

while with a homogeneous held of extension Ld it would be

(2) sin^ 1 III
10 mz?2 d'

Equalizing (1) and (2) and taking H to indicate the 
maximum-value of the actual field we find for the effective 
field-length Ld with a direct current through the jet

i C2(3) = -\ H(x)dr.
J.Tj

If sin 0d taken from (2) is introduced in (7) of the 
preceding paragraph we find

n
L sin^2

(4) sm#m = sinfi,-—-------— , 

from which it is seen that the amplitude with an altern
ating current is no longer identical with the stationary de
flection produced by a direct current equal to the maximum
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value of the alternating current as in the case with a short 
homogeneous field. In calculating sin 6¡n we have to mul- 

n
S1I1^2 

tiply sin ßd with two factors, of which the one---------

2
originates from the held not being a laminar field while 

Le
the other — is due to the field not being homogeneous.

In the case of tig. 23 we find Ld = = 3.15 cm, thus
appreciably different from the effective field-length with a wave

length of 13.3 cm, the factor y being yy = 0.952. With theLd 3.10

sin 0.651
same field and wave-length ---------  = „ = 0.919 so that

ti 0./09
/e b

sin 0nt = 0.952• 0.919-sin bd = 0.875 sin f)d.

10. Damping of the Wave.
The theories stated above have all been based on the 

assumption that the several particles of the jet are inde
pendent of each other in their motion. Now, actually two 
neighbouring elements do influence each other and the in
fluence may probably be conceived in the way illustrated 
in fig. 25. Here the original jet is considered as made up 
of disks. When a wave is formed, these disks are displaced 
with regard to each other. Thus the viscosity of the 
fluid comes into action and will cause the amplitude to 
be somewhat smaller than predicted by the elementary 
theories above.

The wave considered in fig. 25 is of the rectangular 
type indicated in chapter I, and we shall here confine our
selves to that type of wave. We may consider three adjacent



62 Nr. 2. Jul. Hartmann:

Fig. 25. Damping of Jet-Wave.

elements 1, 2, 3 of which 2 passes the laminar field of 
extension dl at the moment /0 at which the alternating 
current producing the wave is

(1) i = I sin Mt0.

In the field the element in question obtains a velocity 
perpendicular to the original direction of the jet given by 

1
10

(2)
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where y stands for the density of the liquid while S’ is the 
area of the cross-section of the jet. Outside the held the 
element 2 is acted on by tangential forces in lhe surfaces 
of separation between 2 and the adjacent elements 1 and 3. 
The force originating from 1 may be written

(3)

and from the element 3

(4) /<+.//< =
(1 dl) 1y _F-w —7- da?

. dx dx da? /

The resultant force is thus

We now take /0 as the independent variable instead of
x noting that

and thus

(7)

. ^0 1 ±8=
dx p í/7„

1 d2ny
<te2 = p2 df2 ‘

From (2) it follows that

(8)

Hence

(9)

d2 vy _ __ 1/7/
d/“ 10 o Sv dl ■ • sin M f0.

sin ca t(}- dx.

The motion produced by ./K is determined by

(10)
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from which
i r HI t2

(11) IJ =--- , n ’ ~ ’ ----------3 ' ■ w“ * SÍH M ^0 ‘ <7 H“ (‘l ’ ¿ + f2 »10 in ou 1

ct and c2 being arbitrary constants. Their values are de
rived from the conditions

Í/ = 0

whichfrom

(12)

(13)

C‘ = 10

HI h ■ /——- • dl • sin M L. o Sv

1 H/ 2 . ,<?2 = . „ ~---------- 3 ' (ll‘ M S111 M l0 ' n
10 m () U' u 2

1
10

1 HI .
H) • 0 5111 “

1
10 m o vz

I 77 2 ' / *2------- •f/z-o) -sin wr0- ¿5

and = v at the moment t = t0 (Il J

which introduced in (11) give

(14)
1 III

10 m v2 dl-x-sin o) 1

it being noted that x = v (t—¿0),

Now is ^ie amplitude ym predicted by
the elementary theory (in the case of small amplitudes).
The actual amplitude may be written

(15)
HI 

m n2

where f is termed the inverse damping factor. It is less 
than 1 and by (14) may be written

9 9

or
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(17) f = 1 — 2æ2 v-^2 = 1 — 2n2‘V’ T- • Å ,
V k k k“

v = — being the dynamical viscosity of the liquid.
p s

Obviously the theory set forth above is based on the 

supposition of small damping in that 2- in (5) is derived 

from the expression (2) for the lateral velocity obtained 
in the field. It is thus assumed that the latter velocity is 
only altered by a very small amount by the damping forces. 
With the mercury jet-waves employed in jet-wave commu
tators the said assumption is as a rule justified and (17) 
should accordingly in the main represent the relation be
tween the damping and the various quantities on which 
it may depend. Considering a mercury-wave, we have 

V = 0.00116 (at 18 Centigrades). Let y = 1, 2 = 6 cm and 

v — 600 cm per sec. then 2/r2r--^ = 0.635-IO-5, i. e. 

very small compared to 1. Practically no damping should 
thus be expected. As a matter of fact the damping in a 
case like that considered is so small that it is difficult to 
measure it, and therefore also to test the theory in order 
to see whether the conception of fig. 25 holds good, or 
whether one is justified in using for q (or v) the value 
corresponding to a laminar How of the liquid. Obviously 
the theory now indicated does not lake all forces into 
account. Thus also the surface-tension will undoubtedly 
give rise to damping. We shall not, however, go further 
into the problem of the said damping, it being proposed 
to subject the whole question to a special experimental 
investigation.

Provided, however, that the expression (17) holds good 
in the main, information of considerable interest may be

Vidensk. Selsk. Math.-fys. Medd. IX, 2. 5
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derived from it. In the first place it is seen that the damp
ing is independent of the diameter of the jet, a fact which 
is easily understood, for according to (5) the damping 
force acting on an element of the wave is proportional to 
the area S’ of the cross-section, but the mass of the element 
is proportional to the same quantity, and so the motion 
becomes independent of S’. Furthermore it is seen that the 
damping observed at a distance which, measured in wave
lengths, has a definite value constant^, is inversely as z2. 

The damping thus probably increases very markedly with 
decreasing z or, with constant velocity p, with increasing 
frequency. Finally the expressions (16) and (17) predict a 
damping for water which is ah. 10 times greater than for 
mercury, v being ab. 10 times less for the latter liquid than 
for the former.
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CHAPTER III
Particular Properties of the Jet-Wave.

1. Slope and Cross-Section. Rectangular Jet-Wave Type.
In the present chapter 

we shall consider a series 
of special properties of the 
rectangular and the circular 
jet-waves, discussed above.

The rectangular type may 
be represented by

(1) y = «arsine

= ax sin (rø t — y x), 

cc indicating tangens to the 
angle tig. 26.

The slope of an element 
Fig. 26. Jet-Wave, rectangular Type.

(Is of the wave against the rr-axis is determined by 

(2) 

or from (1) by

(3) tge = a sin (rø t — g .r) — gcc x cos (co t — g x).

The slope in a certain point x, y is found from (3) 
by first determining by means of (1) the moment t at 
which the wave passes the said point. The slope in 

5
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the .r-axis is of special interest. For points of the latter 
y = 0 i. e.

(4) sin(o>i — fix) = 0 and (5) cos(w/ —/¿rr) = ±1.

Hence
(6) tg e — fiax = naß,

ß standing for

The element ds of the wave, must contain the same 
amount of liquid as the element dx of the original jet, dx 
being the projection of ds on the .r-axis. If therefore So 
indicates the area of the cross-section of the original jet 
and S the corresponding quantity of the element ds, then

(7)
from which

(8)

Hence the cross-section of the wave in the .r-axis is 

(9) S

and the diameter

(10) d

of the original jet.

4)

*8o

<70 being the diameter

2. Slope and Cross-section. Circular Wave-type.
A wave of the circular type may generally be represented by

(1) sin H = sin sin w\t----- ) = sin ft sin («/— m /•) .
/// \ IJ / III
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From fig. 27 we see that the slope of an element ds 
towards the radins-vector r is determined by

(2)
Hence from (1)

(3) tge =
r (t)si" %

cos u cos (ft? t — fi r) .

Again the slope in a 
given point r, 6 is found by 
eliminating t from (1) and
(3) . For points in the axis 
of the original jet, ft = 0,

(4) sin (m t — fir) = 0 
and
(5) cos (to/ — fir) = 4-1 

so that
. Cft)tcie — + sin H ■ —(6) J m i)

= T nß sin Bm = =F nßcd,

il X? — X and cd = sinft;n. The difference from the rect- 

\2?
angular wave is thus that a — tg6m is replaced by cd = sin 0nt. 

With the circular jet-wave the element ds of the wave
contains the same volume of liquid as the element dr of 
the original jet, dr being now the circular projection of ds. 
Therefore

thus for points of the axis
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For ¡3 = 1.8, a — tgfim = 0.5 i. e. «' = sin bm = 0.447 we find 
from (6) tgs = 2.53, t = 68°27' and from (8) and (10) S = 0.367 So 
and d = 0.606 d0. Under the same conditions the rectangular 
wave is thus a little more horizontal (vertical jet assumed) than 
the circular wave.

(9) 5 = °0

|/1 + 7T2 at2 ß2
and

(10) d =

3. Electrical Resistance of the Wave. Rectangular Type.
Of very great importance in certain applications (jet

wave commutators) is the question of the ratio of the re
sistance of the wave and the resistance of the corresponding 
piece of the original jet. We start with the rectangular wave 

(1) y = ccxsinw^t——— «.rsin(«Z— /ix).

The resistance of the wave from its starting-point x = 0 
to the plane x = I, fig. 26, is determined by

as
(3) do dx — d2- ds.

In (2) k indicates the specific resistance of the liquid. 
The resistance in the length / of the original jet is

(4) /?„=—•/.
4rfo

The ratio between the resistances of the undulating 
and non-undulating jet is thus
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hence

(8)

dx /
a2 sin" (w t — fi x) + («2 a~x'~ cos2 (m t — fix) 

— 2 fia2 X sin (to t — /i x) cos (to t — fi x)

The average value taken over the time of F—1 is found 
by carrying out the integration indicated in (6) for those 
members of (8) only which do not contain trigonometric 
functions as the latter members are bound to disappear, 
being periodic functions of time with a frequency twice 
that of the jet-wave so that the average taken over a period 
of the latter is zero. Hence 
simply

(9) F—i =

or with / = /? —

(10) F—l =

the average value of F— 1 is

it being noted that fi = -y-.

The variations in the resistance of the jet-wave are
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found by carrying out the integration (6) for the periodic 
members of (8). The result may be written:

where tg <f> = — . The amplitude of the A
of double frequency is

periodic variations

V I +4

With increasing extension /? of the wave the

«» • ?l|/+ <^)2 +1 -2 sin2nß + 2 S'" J-cos 71 ß

| //sin zr/S\2 . sin 2^ 2k brd + cos 2 +2 +•

2 2 zj2 2_ a a p Tf, TT _pression tends to —-Tr/jorto --, . Hence for
1 4 4tt/?
lues of F— 1 may be expressed by 

latter ex

large va-

(13) 1_| Sin + 9

from which it is again seen that F— 1 with increasing ß tends 
to a value independent of time, namely the average value

2 /)2 2 2
—— . ft 0 % . ft T , T ,i — 1 = — ---- r — . In tab. I the function

2
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F sin (2 « t + y)

is illustrated through numerical values of the constant and 
variable part, and of their ratio. The latter ratio measures 
the relative variations of the resistance of the jet-wave con
sidered. It is seen that with a = 0.5 and /? = 2 the resi
stance of the wave varies with an amplitude of ah. 14 per 
cent, of the average resistance. Obviously, in the case con
sidered, the relative amplitude of the resistance has a max
imum for some value between ß — 2 and ß = 10.

Table I.

ß

1. 2.

1./2.

a = 0.5

q2/j2^2 «2
6 2

0.5 0.0856 1.228 0.070
1.0 0.206 1.536 0.134
1.5 0.288 2.052 0.140
2.0 0.398 2.775 0.144

10.0 3.93 42.195 0.093

4. Resistance of Wave with constant Amplitude.
For the sake of completeness a formula for the resis

tance of a simple sine-shaped wave of constant amplitude 
may be derived. The wave may be represented by

y = i/o sin (ft) f — /i x)

ds\2 
dx) 1 — Z/q fF COS2 (ft) / — ^.r).

(1)

from which

(2)

Hence from (5) in the preceding paragraph
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(3)

The average value of F—1 over the time is thus 

(4) 2

The

(39 9

second member in the brackets is maximum orThe
minimum at the moments determined by

//_ i =

where / = .

\2/ 
expression (3) may be written 

(5) / = 7'= 9^ +p| where p = 0, 1, 2, . . .

and where ß I The member is zero at the moments

(6)
2+^ 7' Tf»- where p = 1, 2, 3, o

For special values of I, resp. ß, F—1 is independent 
of time, thus for the values given by sin /i I = 0 (except 
p I = 0) i. e. when

(7) p / — p • zr, (p = 1, 2, 3 , . ..)

thus for

(7') ¿=p, (p= 1,2, 3,.. 9
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The greatest variations in F— 1 are obtained when / 
is determined by

(8) ~ ~ ™ß

that is to say, approximately when

(9) ßn = , (p = 3, 5, 7)
thus for
(10) n = |.

Fig. 28 illustrates some of the relations indicated.

¿2» h maximum of variation.
Fig. 28. Jet-Wave, constant Amplitude.

5. Resistance of a Jet-Wave of circular Type.
We proceed to consider the resistance of a wave of the 

type in fig. 27. In this wave the element ds contains, as 
indicated, the same amount of liquid as the circular pro
jection dr of the original jet. Hence the ratio of the resis
tance of the wave out to a circle with radius /, and the 
resistance of the length I of the original jet is now, com
pare paragraph 3,
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or as

(2) 

(3)

p's‘Y_ .

\dr/ /

The wave may be represented by 

(4)

(4)From

(5)

Thus

(6) Z'-l -

9 9 /9 0 9 / L \a ~r cos {co ! — /( r)
1 — a2 sin2 (w t — /.i r)

r) 1 — +2 sin2 (to/— tur)\ 1 dr.1 \ 2 '2 2 2/1— \ [i a r cos (to/—/z 
' • 0

9 
r

(7)

By developing 1— w'2 sin2 (w/—/tr). 1 in series (6) 
may be written

2 '2 +

F— 1 = & - \ r2 1 + +2 sin2 (to t — tu r) + a'4 sin4 (m t — /i r)
* »Jo

— a'6 sin6 (w t—fz r) + a's sin8 (w /—/z r) — sin2 (to t—fi r)

— «'2sin4(to /—/z r) — a'4sin6 (w /—/z r) —a'6 sin8 (w/~/zr) j dr.

means of the following formulae.

(1 — cos 2r)

sin6 z

sin8 z

• 2 sin 1
2
1
8sin4

32 (C0S 6 3 — 6 cos ~ 15 cos 2z — 10)

1

After this the powers of the trigonometric functions 
are expressed by trigonometric functions of multiples of 
(ro/—/zr) by

(cos 4 z — 4 cos 2zF 3)

(cos8z—8 cos 6 z — 28 cos 4 z—56 cos 2 c+ 35).128



The Jet-Wave. 77

If, however, as is generally the case, merely the average 
value F— 1 over the time is required, it suffices to carry 
out the integration with regard to those members of (2) 
which do not depend on trigonometric functions. In this 
way we find

As an example we may consider a jet-wave for which 
a — tg6]n = 0.5 or a = sin = 0.447. With ß = 2 we 
find from (8) F— 1 = 1.74 while for a rectangular wave 
the expression (10) paragraph 3 gives 1.72. There is thus 
only a slight difference between the two types of waves 
with regard to resistance.

A good many applications may be made of the dependency 
between the resistance of a jet-wave and the quantities on which 
the said resistance depends. The general character of the said 
applications may be thus elucidated. The resistance of the wave 
out to a given distance I is determined by

(1) F = F-Z-r,

r being the resistance of one cm of the original jet. On the other 
hand we have approximately

(2)

or roughly, if the second member is tolerably great compared to 1,

(3)
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Now /? is, with a constant value of I, proportional to the fre
quency h — and so it is seen from (1) and (3) that

(4) =
R n

i.e. a certain percentage change in the frequency gives rise to double 
the percentage change in resistance. A change in frequency may 
thus be measured through the corresponding change in resistance. 
(Jet-wave frequen cy mct,er). With constant frequency and 

constant field a change in the cur
rent producing the jet will produce 
double the percentage change in the 
resistance as a is proportional to 
the said current. A more complex 
system is indicated in fig. 29. The 
wave is produced through the inter
action between a constant alternating 
current, supplied by the source T(j 
and a constant field produced by 
the magnet J/. The latter has two 
windings of which the one may be 
fed from the storage cell or battery 
B, while the other may be inserted 
in a d. c. circuit I. Now if the cur
rent in the latter circuit is raised, 

this will, according to the direction of the current in the winding 
on the magnet, give rise either to an increase or a decrease of 
the resistance in the wave between the two electrodes and />. 
So by the current in I we arc able to control the resistance of 
another circuit II. Obviously a good many combinations of the 
kind in fig. 29 are possible. It may be noted that the resistance 
between two electrodes such as Zq and /A is given by

(5) R = rlrF(ß.2) — ¡'h FM

thus approximately by

Fig. 29. Control of Resistance 
through magnetising Current.

(6)
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6. Resistance between an Electrode in the Axis of the Wave 
and an Electrode perpendicular to the said Axis.

In fig. 30a E and E.¿ represent two adjacent electrodes, 
the one in the axis of the jet-wave, J, the other perpen
dicular to the said axis. The jet-wave will connect E and 
E2 during the passage of every second half-wave. We shall 

Fig. 30 a—b. Resistance of Wedge-Commutator.

endeavour to derive a formula for the average resistance 
taken over the time of passage of the part of the wave 
between E and E.¿, the problem being of considerable in
terest in connection with certain practical applications of 
the wave. (Resistance of the Wedge Commutator).

In order to simplify the problem we shall replace the 
wave in fig. 30 a by a simple sine-shaped wave of constant 
amplitude, Jt, tig. 30 b. In the position shown the said wave 
may be represented by

(1) U = ï/^sin^æ.

The resistance of the element ds may be written, com
pare paragraph 3,
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(2)

So indicating the area of the cross-section of the original 
jet. From (1) we get

(3) <//? = —(14- z/2;1 (w2 cos2 // x) dx.

Thus the resistance from the origin of the wave aL to 
the abscissa x is

(4)
R =

k
$0

4- z/2nn" cos2 fi x) dx

sin (2 fi x).

This is the
moves with the

not contribute to /?. Hence

and form the integral

same as to assume that the electrode A4 
velocity of the jet upwards while the wave 

is kept in the position shown in tig. 30b. The last mem
ber in the brackets does

In order to obtain the average value in question we 
now put x

(5) R =

(6)

Thus, 
k stance —

if F now indicates the ratio of R and the resi
st Z
— ot the length — of the original jet, we have

2(7)
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Introducing the notations -,n = 

membering that , we mayz

a and , . = /$ and re
write \2 )

(8)

In the application of (8) to the actual wave in fig. 30 a 
the question is what value should be ascribed to /?. It has 
been found that good agreement between observed and cal
culated values is established if is determined as

/?0 being the distance from the starting-point 0 of the wave 
to the electrode E.2 measured in half-wave-lengths. Thus 
for a wave a = 0.4, ß =1.8, d = 4.20 mm (diameter of 
jet) the resistance here considered was found by measure
ment to be 5.0 milli-ohm, while from (8) and (9) was 
found 5.4 milli-ohm. The agreement was quite sufficient 
for the application. Actually the wave was not of the rect
angular type indicated in fig. 30 a but of the circular type. 
On the other hand, the electrode E.2 was approximately 
bent according to a circle with its centre in 0. Judging 
from the comparison at the end of paragraph 5, it seems 
justifiable to assume that if (8) and (9) hold good for a 
rectangular wave in combination with a straight electrode 
E.2 as in fig. 30 a, they may also be used in the case of 
the actual combination described.

7. Temperature-Gradient in a Jet carrying an electric Current.
In a jet carrying an electric current the temperature 

will rise from the point at which the current is introduced,
Vidensk. Selsk. Math.-fys. Medd. IX, 2. 6
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say the nozzle, in the direction of the flow. An element 
dx of the jet will commence heating at the moment it 
enters the current-carrying part of the jet, and it will go 
on heating as long as it is moving inside the said part. Its 
temperature must therefore increase steadily which means 
that the temperature of the jet must rise in the direction 
of the motion. The amount of heat d() stored up in the 
element dx during the time dt is

( 1 ) dQ = 0.239 Z2 k ~ • dt (g. cal.),

I being the current in Amp., k the specific resistance of 
the liquid in Ohm per cm/cm2, and S the area of the 
cross-section of the jet in cm2. The corresponding rise of 
temperature dd is accordingly given by

(2) cqS-dx- dd = 0.239 l2k~ dt,
A. J

c being the specific heat and o the density of the liquid. 
During the interval dt the jet particle proceeds by the dis
tance dx where
(3) dx = vdt,

V being the velocity of the jet in cm/sec. Hence the rise 
of temperature along a piece dx of the jet is

/• Z2
(4) d.7 • = 0.239-------7^-d.rco vS

from which follows that the temperature gradient (rise per 
cm) is

k I2
(5) d = 0.239- •—ö.cy vS

With a mercury jet k — 0.958-10~4, c = 0.033, o — 13.6 
from which
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(6)
¿ = 5.10 IO-5-4 <Cellti8rade/cm’

Amp., cm/sec, cnr)

The expression (5) is derived without the conductivity 
and the radiation of heat being taken into account. Estimates 
of the effect of the said factors show that in most cases 
they are practically insignificant. In a test of the theory 
the liquid from the jet was collected in a simple calori
meter and its temperature measured. With a mercury jet 
of 1.5 mm, a velocity of 253 cm/sec and a current of 
20 Amp., the two values 0.213 and 0.232 centigrades were 
found for <7 while the value 0.257 centigrades is derived 
from (6). The difference between the observed and calcul
ated values may easily be explained by the great difficulties 
of the measurement.

8. Heating of a Jet-Wave of rectangular Type.
In the most important application of the jet-wave, that 

of the jet-wave commutator, heavy currents are transmitted 
through the wave and it is 
thus the heating of the same 
which is of interest. We 
shall consider a particle /.s*, 
fig. 31, which originates 
from a length Jx of the 
jet. The said particle is 
emitted from the centre O 
of the field at the moment 
/0 in the direction At the 
moment t it has reached the 
plane x as z/.s. We shall as
sume the wave to have been 
produced by a current

Fig. 31. Heating of a Jet-Wave, 
rectangular Type.

6
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(1) i = Iq sin (f)t.

(2)

(4) y — ax sin w

Hence

(5) /?/ = z/æ

as

(7)
• . «.c- L»ya sin w f0 — a--- cos z/æ.

(3) we find

(8) 1

The resistance of Is is

(9) .S'

where the area of the cross-section 5 of Is is determined by

(10)

So being the area of cross-section of the original jet. Thus

Jx.

Inserting in

or,
(6)

a = tyf)¡n. The length Is of the particle is deter- 
bv

k
.Is,

/ 2z/S

where
mined
(3)

The direction H of the path of the particle in question 
is, compare chapt. I, determined by

where
equation of the wave at the moment t. The

lyH = a sin w/0,

X M 
a--- cosü

the connection between lx and J y is given by the 
latter is

X i>(t -

X (f) /a •--- cos w I t —

./.T2

(11) ZK = -^- Zs2 = ¿-
s,}/x

M

I)
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The amount of heat dQ accumulated in ./.$• during the 
d.c .time di — — is

dQ =- 0.23$ I2 JR-dt
X (O « sin w t0 — a — cos co t0

and the corresponding rise of temperature dd is deter
mined by
(13) cft Soz/x - dd = dQ 

from which
I2k

(14) d# = 0.239---- .Cftó(5 V dx.

The rise of temperature obtained during the passage 
from the centre of the field to the distance x is found by 
integration of (14) from 0 to x. The result is

0.239
c(>s;5 p T + x a2 sin2 «o /0 — a?2 — a2 sin co t0 cos co t0

1
3 x3

2V COS2 ft) tø

For the particle emitted at the moment t0 = 0, thus the 
particle travelling along the axis of the wave, we get 

(16) Œ239/U’
C£.S’2p

Here the first member represents the rise of temperature 
dø in a non-undulating jet of length x. To this rise is 
added an amount dd which, measured in relation to d0, is 

(17)

/? standing for x
If for instance a = 0.5, /? = 2 then
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Ji}
= 3.3. The rise of temperature along the axis is 

thus more than four limes that in the original jet carrying 
the same current.

For the particle travelling along the path of greatest 

deviation, thus corresponding to w/0 = —, is found

(18) 0.239/2Å- 
co*S'o v

X
c0SX.'

One would expect to lind a rise of temperature equal 
æ Vto that in a straight iet of length-------- , velocity---------

cos«,,, - cos9„,
and area of cross-section So cos . Actually the formula gives 
the value anticipated.

The rise of temperature in a piece of the wave between 
two planes perpendicular to the axis of the wave at the 
distances and .t2 from the origin of the said wave, is 
of course calculated as the difference between the values found 
for i} from the formula above by inserting ,r2 and for x.

9. Heating of a Wave of circular Type.
Finally we shall consider the heating of a wave of the 

circular type, fig. 32. Again we shall imagine the wave to 
be produced by a current

( 1 ) z = /() síh w t

and we shall fix our attention on a particle Js originating 
from a member ,/r of the non-undulating jet. The said 
particle may pass the centre of the field al the moment t{j. 
It will then be sent out in a direction given by

(2) sin 0 = sin ■ sin w /0.
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The length Js of the wave-element formed by the par
ticle at the moment t at the distance r from the origin of 
the wave is determined by

(3)

The connection between z/0 and z/r is found from the
equation of the wave

(4) sin 0 = sin tiin sin M

which gives
, s cos 6 v
(5) z/r =----------- -------

COSMl0 Ct) 

it being noted that

(6) r = n(7—/0).

From(3) and (5) is found

(7) z/s2 = (r2 + A2) z/02.

The resistance in z/s is

where

(9) SJs = SqJ r.

Fig. 32. Heating of a Jet-Wave, 
circular Type.

From (7), (8) and (9) 
is derived

(10) ./« =

During the motion through the distance dr, taking the 

time dt = — , a quantity of heat dQ is stored up in the 
v

element ds, where

(11) dO = 0.239 Z2z//i-.
V
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Introducing for 7/? (10) and identifying dQ with

(12) 
we get

(13)

dQ = !r - dd

0.2'0^ I2k
dr.

The total rise of the temperature during the passage of 
the particle from the origin of the wave out to the dis
tance r thus becomes 

(14)

Indicating by <%0 the rise of temperature in a length I 
of the original jet we see from (14) that d-= .9-0 + z/T/ where

./d 1 r __ 1 /wcoswfo’sinfl \2 g
<V0 3 A2 3 \ u cos H / 1 ’

where it should be noted that H and Zo are interconnected 
through (2). For /0 = 0, fl = 0, we get 

which should be compared with (17) in the preceding para

graph. With /0 = the rise of temperature in the outermost 

particle of the wave is found. Il is seen that ,/d = 0, that 
is to say, the said particle is heated as much as a par
ticle of the original jet would be. This result might be anti
cipated since the outermost particle does not suffer any 
deformation.

Again the heating of the wave between two concentric 
electrodes with radii r2 ancl ri ’s found as the difference 
between the values &.2 and derived from (14) by intro
ducing r.2 and i\ for r.
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APPENDIX
Experimental Test of the Theory of the Jet-Wave.

1. The Wave-Length.
According to the theory set forth above the length of 

a half-wave should, subject to certain conditions, be deter
mined by

where T is the period and p the frequency of the altern
ating current used in the production of the wave, while v 
is the velocity of the jet. In order to test (1) a fairly large 
number of instantaneous pictures of the jet-wave was pro
duced. Fig. 15 in chapt. II originates from this investigation. 
The wave-picture is seen against a plate of frosted glass 
on which the axis of the wave and the boundaries of the 
wave-space corresponding to the angular amplitude a = t9e,n 
— 0.5 are drawn. The scale on the axis indicates the dis
tance from the centre of the field in cm, thus the distance 
from the starting-point of the wave.

Table I.
ho = Distance from Surface of Mercury in Reservoir to the Jet-Hole. 
do — Diameter of Jet-Hole.
xn — Distance from Jet-Hole to Number n Zero-Point of the Wave- 

Picture.
a:n + 1 + ln

2
h — ho +

Observed Half-Wave.

Factor reducing the Scale to the Plane of the Wave.



90 Nr. 2. Jul. Hartmann:

CM ri

1.
02

2 r-* CM r-Z
O o

1.
00

0 w-f
X j2 o

-
ri

a>
ri

1.
01

7

C 
c

o -r r* X ri ri ■ o ri to >o
X X X 1 — X to

1 CM Q r^ te to to CO id *.¿

X — X CM X r* — >o —t" M r*
CM X X X X 1^ 1^ X lO »o

CM Q -■ -' to to to to to lQ id

»iC 1^
ri i—i r—■ O

O 4- 4- 4- +

■g ■g -i *
CM —r <D CM ri ri o o C

01 £
Q i

O C->

? i 1 1

o ù

1 5 -

u

s o
o c

i

i * 1 1 1 « 1O c

ri X CM cc o cc X X r* r* X
ai ri 3 E

O
X 3*

r*
X X X —, r* X

k¿

te

i M CM CO !>■ X ,_ o X
oo g -r ,—i r* M< r—! co X o ri X

CJ X -r lO X X1 lO X —f lO »o »O
71 ri CM CM ri ri ri ri ri

c
T— —t* o oc cc ri oc CO X _g O X o o l^> X oc i^ Si

4- CJ CO CO r* CO CO co »O lO
_ c

¡J" -<* CM
_

ri ri 1^ O
4- 1—• ri CO CO co X T— o ri r—

CO T“< CM . e OÍ cd X CO X X 1C ri L"« X+ T— ri »—< ri — ri w—<
c

X CM CM X X o• 1-0 CO X 3- CO —f X
tO li

s
L.O ri 3Î CO C¿ = l< X* X LO M* Q to

— CM ri ri ri

r - TH ri

-

co 
o

S

- o O

CO g 1—i T—< o
CM ó tO 1O lO l-O

<D
cn
_4

CM ~£ ¡5 lO icc
O r;

x X X id
Q CM CM ri ’■f

CM CM ri

O

r\ z iO to to X



The Jet-Wave 91

X X X w CM CM CM CO

1.
04

2 kO X CM

1.
05

8 -i t- m CD CO
CO I X r** ’T

CD X 
y-^ CM ’’"TX DI o o CM M* CO k-O X k-O co

- - - - - -

05 ec CM 50 ’■f M’ CM co o o I'*- I'- X XCM X r* r* 05 X X X I'* r* 05 o r* r* 05M* ”-b M* co co CO CO CO co co co CO c¿ c¿ co c¿

kO ,_! CM r* -+■ k-O to CD to o CM CM
CM X k-O CD !>■ kO CD 1^ kO CD L"" X kO CD r* X
’■t M* "rb co CO CO co co co co CO CO co co X co co

kO ’-bo o oo O o O o o o o o o o o O o ® c o o

+ + + + 4
-M

<L> o O <v O
Q CJ Q Q

o O o o s o © o U 
Q o — o

D
<D © o -O Q Q c —

1 I 1 1 a 1 1 [ a I I 1 1
1 VH 1 1 1 rH I * I • 1 I * T-l

O ó e o o
V V V V V

o CM co M* *rf ,_
kO to o

DI DI
1-* CM x ’“b kO CD L>- kO CD r— k-O CD r- X kO CD X

w-b co CO CO co CO co co CO co co X X X CO

CM r* co 05 o 05 05 05 05 05 X to >- X r*
Z¿ o kO 05 CD 05 CO X CM CD o X X CO
□0 05 Gs CD r* to CD 1^ CD r* r* r* CD CD r* r*

O I — X 05 k-O r* 7 1 CM 05
kO kO 5D GO 05 • o 05 05 X X o i—t 05 o

co co’ "^b CO CO CO co X co CO

X r* co CM CM X r* KO r* X X CM
CM r* co kO co co co CM r-t CM CDkO o M* 05 CD o k-O 05 co 1^ k-O 05 k-O 05 X

— 1O — 05 tO r* r* 05 r* CM X co DI r*
kO 05 M* o L^ kO M’ co CO co co CO CO T-t o y-^ CM X r*- CD kO CDc¿ r* CM r* i—( X CM CD co 1- 1 kO k-O 05 co y-y co CD kO 05

CM r—f TH CM

CM CM CM DI CM
CD CD CD CD CD
05 05 05 05 05
® ® o O -

05 05 05 05

kO k-O k-O kO

kO 10 iO k-O

kO kO kO k-O k-Oo 05 05 05 0500 k-O kO kO kO

O 42 o
r* k-O kO
X ~T

’) C
yl

in
dr

ic
al

 on
 the

 ou
tm

os
t 4

 m
m

. o
f t

he
 bo

re
.



92 Nr. 2. Jul. Hartmann:

In tab. I half-waves found from the photographs are 
Â

compared with values of — derived from (1). The agreement 

is fairly good. The observed wave-length seems, however, 
to be slightly in excess of the wave calculated from (1). 
The fact is explained below by the influence of the surface
tension on the velocity of the wave. In the table certain 
corrections are indicated in columns 10 and 11. They will 
be understood from the following discussion of the test.

In the latter the half-wave read on the scale of the 
photographic plate is of course corrected for the small 
distance from the wave to the plate. It is the wave corrected 
in this way which is given in column 13. The velocity of 
the jet is determined by means of Torricelli’s expression

(2) p=|/2^/f.

In (2) the influence of the surface-tension on the velo
city of the jet proper is neglected, which, however, is justi
fiable1. Neither is the pressure-drop in the jet-pipe taken 
into account. It may be found by means of the Osborne 
Reynolds’ law of similarity, according to which the pressure
drop h per cm of the pipe and measured in cm liquid
column is determined by

where u is the velocity of the flow in the tube in cm/sec, 
d the diameter of the pipe in cm, v the dynamic viscosity 
of the liquid which for mercury is 0.00115 at 20 centigrades, 
while finally /’ stands for the universal Osborne Reynolds’2

1 On the Influence of the Surface-Tension on the Efflux of a Liquid 
in Jet-Form. Phys. Bev. Vol. XX, p. 728. 1922.

2 Compare: A Comparison between the Flow of Water and Mercury 
in Pipes etc. Mémoires de l’Académie des Sciences et Lettres de Dane
mark, Copenhague, 8me Série, t. X, Nr. 5, 1926.
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function of which a picture is given in fig. 33. By means 
of the latter figure and (3) the pressure-drop in the jet
pipe is calculated, and so again the percentage correction 
to be applied to the calculated wave-length. We shall 
illustrate the determination of the correction by means of 
Pl. 55. With the latter the velocity of the jet just below 
the jet-hole was j/2-981-228 = 668 cm/sec. The diameter 
of the jet was very nearly 0.5 cm, the coefficient of con

traction being 0.840. The internal diameter of the jet-pipe
/0.5\2was 1.9 cm. The velocity v in the pipe is thus Í j -668 

vrf , \ •* /
— 46 cm/sec. From this we find — = 76000, and from 

/ i?d\ .the curve referred to above /T—I = 0.0026, which again 

gives the value 0.0117 cm Hg for /i.
The length of the pipe was ab. 226 cm from which 

the total pressure-drop is found to be 2.65 cm Hg or 
2 65* —• 100 = 1.2 per cent, of the head. It means that the 

velocity calculated from (2) must be reduced by 0.6 per 
cent, and the same is true for the wave-length. In tab. I 
the corrections found in this way are stated in column 10

Z
under the heading / — .
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A similar correction due to the pressure-drop in the 
jet-hole should furthermore be applied to the velocity and 
the wave-length. The correction is in all probability small, 
presumably below 1 per cent., judging from a special in
vestigation. In the experiment Pl. 69 the bore was cvlin- 

Fig. 34. Correction for the 
Distance to the Field.

drical of a length of ah. 4 mm. 
The elfect hereof is traced in the 

ñ
\2 I

small value of vp.- But in spite

\2/c
of the comparatively long bore 
the said quantity does not differ 
from the values corresponding to 
conical bores (55, 66) at the same 
head by more than ah. 1.5 per 
cent.

Again it should be noted that 
the theory of the jet-wave shows 
that the half-waves close to the
magnetic held should be some

what longer than y — and the longer, the greater the ex

tension of the held in the direction of the jet. The cor

rection to be applied to /;•— may be taken from fig. 34. 

The abscissa indicates the distance from the centre of the 
field to the middle-point of the half-wave in question. The 
ordinate means the ratio of the half-wave predicted by the 

theory a and the value ~ found as The two curves 

correspond to two values of the length / of the field.
2

The length is measured with the half-wave — as unit, and 

strictly the length means the effective field-length which 
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is a little different from the height of the pole-piece. In 
tab. I the correction found from fig. 34 is slated under

Â .
.7^— in column 11. The correction has obviously only bear

ing on the half-wave nearest to the Held.
If hereupon the ratio of the observed and the calculated 

— and corrected — half-waves is formed (column 14), 
values close to 1 are found especially with higher heads. 
A systematic deviation, however, makes itself felt, the ob
served half-wave being, as already stated, greater than that 
calculated. There is some reason for believing that the 
discrepancy may be explained by the effect of the surface
tension on the velocity of the wave. Il is known that a 
disturbance will travel along a cord of a mass per cm nt 
and a tension P with a velocity 

(4)

Now in the case of a cylindrical jet, produced from a
liquid with the surface-tension C and the density e, P = Cnd 

and m = c- d~, d being the diameter of the jet. Accordingly 

a deformation should run out along a mercury jet with a
velocity

(5)

C being 500 c. g. s. and q = 13.55. If now the velocity vc 
in the case of the jet-wave is simply added to the velocity 
i) of the jet, a half-wave should be anticipated which would 
i l)cbe longer than the theoretical one by---- 100 percent.

Ivc\
In tab. II the values ol I—J-100 are stated in column 4. 

They should be compared with the values in column 5 which 

show how great is the percentage excess of over
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The two series of figures run parallelly, from which the 
conclusion may presumably be drawn that most of the 
discrepancy considered is actually due to the surface
tension. Obviously the correction for the latter would make 
the calculated half-wave about 1 per cent, greater than the 
observed. This remaining divergence may properly be ex
plained by the pressure-drop in the jet-hole referred to 
above. So there is some reason for believing that a more 
exact test would prove the theory to hold good with a 
very high degree of accuracy with respect to its predictions 
as to the wave-length.

Table II.

1. 2. 3.

Plate
d UC p

cm. cm./sec. cm./sec.
55 0.504 17 690
66 0.370 20 680
69 0.420 19 680

136 — — 550
137 — — 420
145 a — 390
145 b •— — 360
144 a — —- 370
144 b — — 370

2. The Amplitude of the Wave.
The approximate theory in Chapter II predicts for the 

amplitude of the jet-wave a value given by

(1)
' e o

sinfl,,, = 1
in V 1

7Tsin y —' e 2
10 ' 7T
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It was shown that the said theory was in good agree
ment with the more exact theory for field-lengths up to 

j and for amplitudes up to tg 6m = 0.5. An experimental 

test on the validity of (1) is now recorded.
The test was made with 6 commutators in a three-phase 

series rectifier. The field-curves were known for the magnets 
so that the effective field-lengths could be calculated. They 
were in all cases 2.79 cm, while the height of the pole
pieces was 2.30 cm. The half-wave-length was 5.90 cm 
derived from the head h — 177 cm by means of the formula 
i? = \ 2gh and the frequency of the alternating current 
which was 50.0. The mass m per cm of the jets was cal
culated from the diameters d of the jets and from the 
density of mercury which was assumed to be 13.40, corres
ponding to a stationary temperature of 80 centigrades 
of the mercury under normal operation of the rectifier. 
The diameters d were again found from the diameters d0 
of the bores, the coefficients of contraction being determined 
for each of the bores by means of an experiment of efflux. 
The velocity of the jets was, as indicated, assumed to be 
that found from Torricelli’s law. Obviously if the actual 
velocity is smaller than the velocity by one per cent., the 
experiment of efflux will give a value for the mass m per 
cm which is too small by one per cent., and the value for 
in V1 used in the test will be too high by one per cent.

The result of the test is given in table III.
It is seen from the table that the observed values for 

Hm are found to be on an average 2 per cent, greater than 
the values calculated from (1). The discrepancy could be 
explained by an error of 2 per cent, in the assumed value 
for V, due to friction in the jet-pipe and the nozzle. In all

Vidensk. Selsk. Math.-fys. Medd. IX, 2.
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Table III.

Com- 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

mut.
No. o

Amp.
H

Gauss
</o

cm.
sin

cal.
sin

cor.
t(J °ni 
obs. obs.

sin% 
obs.

9.
' = 6.

1 103 4880 0.445 0.844 0.349 0.358 0.399 21°43/ 0.371 1.035
2 118 4450 0.446 0.840 0.367 0.376 0.418 22°42z 0.386 1.030
3 114 4650 0.444 0 855 0.360 0.370 0.395 21°33z 0.367 0.990
4 101 4995 0.450 0.826 0.357 0.366 0.396 21°36' 0.368 1.005
5 114.5 4810 0.451 0.836 0.380 0.389 0.443 23°54' 0.405 1.040
6 108 4790 0.450 0.842 0.352 0.361 0.390 21°21z 0.364 1.010

1.018

probability there is an error which is substantially of this 
size. On the whole the expression (1) is seen to yield an 
excellent means for the calculation of the amplitude or of 

the current necessary for 
the production of a wave 
of given amplitude.

A small correction is in
dicated in column (6). The 
expression (1) is based on 
the assumption that it takes 

Le
the time — for any of the 

V
particles of the wave to pass 
quite true. The outermost

Fig. 35. Correction to Approximate 
Theory.

the field. This, however, is not
particle of the wave will, inside the held, follow a path 
which may approximately be considered a part of a circle 
as indicated in fig. 35. It will travel in this path with the 
velocity of the jet. Owing to this fact the value of L in 

(1) should be increased by -100 per cent, or in the cases 

considered sin 0]n cal. should be increased by the said 
percentage amount.
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The correction may be derived as follows. From fig. 35 it 
appears that

(2)
so that

(3)
and

(4)

Or with sufficient exactness from the series-development of 
sin bm

(5)

7
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